On the Griesmer Bound for Systematic Codes

نویسنده

  • Emanuele Bellini
چکیده

We generalize the Griesmer bound in the case of systematic codes over a field of size q greater than the distance d of the code. We also generalize the Griesmer bound in the case of any systematic code of distance 2,3,4 and in the case of binary systematic codes of distance up to 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Griesmer bound for nonlinear codes

Most bounds on the size of codes hold for any code, whether linear or nonlinear. Notably, the Griesmer bound, holds only in the linear case. In this paper we characterize a family of systematic nonlinear codes for which the Griesmer bound holds. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by showing explicit counterexamples. On the other hand, we ar...

متن کامل

A bound on the size of linear codes and systematic codes

We present a bound on the size of linear codes. This bound is independent of other known bounds, e.g. the Griesmer bound.

متن کامل

On codes meeting the Griesmer bound

We investigate codes meeting the Griesmer bound. The main theorem of this article is the generalization of the nonexistence theorem of [7] to a larger class of codes. keywords: Griesmer bound, extending codes, nonexistence theorem, code construction

متن کامل

Affine blocking sets, three-dimensional codes and the Griesmer bound

We construct families of three-dimensional linear codes that attain the Griesmer bound and give a probablistic construction of linear codes that are close to the Griesmer bound. All these codes contain the all-1 codeword and are constructed from small multiple blocking sets in AG(2, q).

متن کامل

Linear Codes over $\mathbb{F}_{q}[x]/(x^2)$ and $GR(p^2,m)$ Reaching the Griesmer Bound

We construct two series of linear codes over finite ring Fq[x]/(x) and Galois ring GR(p2,m) respectively reaching the Griesmer bound. They derive two series of codes over finite field Fq by Gray map. The first series of codes over Fq derived from Fq[x]/(x) are linear and also reach the Griesmer bound in some cases. Many of linear codes over finite field we constructed have two Hamming (non-zero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1310.4060  شماره 

صفحات  -

تاریخ انتشار 2013